How can we use series representation in limits?
1) We can write $\sin x$ as $$\sin x=\sum\limits_{i=0}^\infty \frac{(-1)^ix^{2i+1}}{(2i+1)!}.$$
How can we write this?
For any given $\epsilon >0$ if we can find $N \geq 0$ such that $$\left|\sum\limits_{i=0}^N \frac{(-1)^ix^{2i+1}}{(2i+1)!}- \sin x\right| < \epsilon$$ than the equality $$\sin x=\lim\limits_{N \to \infty}\sum\limits_{i=0}^N\frac{(-1)^ix^{2i+1}}{(2i+1)!}=\sum\limits_{i=0}^\infty \frac{(-1)^ix^{2i+1}}{(2i+1)!}$$ will hold.
I am assuming we found this.
2) For $x\ne 0$ (we can show this in same manner) $$\frac{\sin x-x}{x^3}=\sum\limits_{i=1}^\infty \frac{(-1)^ix^{2(i-1)}}{(2i+1)!}$$ will hold.
3) Here, Our question is $$\lim\limits_{x\to0} \frac{\sin x-x}{x^3}.$$Using above series represenation we can write it as $$\lim\limits_{x\to0} \frac{\sin x-x}{x^3}=\lim\limits_{x\to0}\left(\lim\limits_{N \to \infty}\sum\limits_{i=1}^N\frac{(-1)^ix^{2(i-1)}}{(2i+1)!}\right). $$My question: How can we continue from here? If we can write $\lim\limits_{x\to0}\lim\limits_{N \to \infty}$ for $\lim\limits_{N\to\infty}\lim\limits_{x \to 0}$, how can we do that?
I want to give an counter-example for last part that limits not always commutative: $$\lim\limits_{x\to0}\left(\lim\limits_{y \to 0}\frac{x-y}{x+y}\right)=\lim\limits_{x\to0}1=1$$ and $$\lim\limits_{y\to0}\left(\lim\limits_{x \to 0}\frac{x-y}{x+y}\right)=\lim\limits_{x\to0}-1=-1.$$
I want to note that my question is not just for this particular example.