Prove $$\int_0^a (a^2 - x^2)^n dx = a^{2n+1}\cdot\frac{(2n)!!}{(2n+1)!!}$$ for $ n \in N $ My idea is to use binomial theorem and integrate partly, but I have not succeeded yet. Are there some hints?
-
Perhaps $a^2-x^2=(a-x)(a+x)$ and then manipulate to use Beta function... – abiessu Apr 04 '16 at 14:26
-
2A solution would depend heavily on what you know and do not know, hence some indications about that seem mandatory. – Did Apr 04 '16 at 14:31
-
And let $x=au$? – Kenny Lau Apr 04 '16 at 14:50
-
1$$\int_0^1(a^2-(au)^2)^n\mathrm dau$$ $$= a^{2n+1}\int_0^1(1-u^2)^n\mathrm du$$ $$= a^{2n+1}\int_0^1\sum_{k=0}^n\dbinom nk(-u^2)^k\mathrm du$$ $$= a^{2n+1}\int_0^1\sum_{k=0}^n(-1)^k\dbinom nku^{2k}\mathrm du$$ $$= a^{2n+1}\sum_{k=0}^n\frac{(-1)^k}{2k+1}\dbinom nk$$ – Kenny Lau Apr 04 '16 at 14:51
-
Looks like I'm late here. – Kenny Lau Apr 04 '16 at 14:51
3 Answers
Note: @Heropup's approach seems to be the most adequate. But you can also succeed by applying the binomial theorem.
We obtain \begin{align*} \int_{0}^a\left(a^2-x^2\right)^n\,dx&=\int_0^a\sum_{k=0}^n\binom{n}{k}\left(-x^2\right)^k\left(a^2\right)^{n-k}\,dx\\ &=\sum_{k=0}^n\binom{n}{k}(-1)^ka^{2n-2k}\int_0^ax^{2k}\,dx\\ &=\sum_{k=0}^n\binom{n}{k}(-1)^ka^{2n-2k}\frac{1}{2k+1}a^{2k+1}\\ &=a^{2n+1}\sum_{k=0}^n(-1)^k\binom{n}{k}\frac{1}{2k+1}\tag{1} \end{align*}
There is a nice identity called Melzak's formula which can be used to solve (1).
Melzak's formula: Let $f(x)$ be a polynomial in $x$ of degree $n$, i.e. \begin{align*} f(x)=\sum_{k=0}^na_kx^k \end{align*} Let $y$ be an arbitrary complex number. Melzak's formula states that for $y \ne 0,-1,-2,\ldots,-n$ \begin{align*} f(x+y)&=y\binom{y+n}{n}\sum_{k=0}^n(-1)^k\binom{n}{k}\frac{f(x-k)}{y+k}\tag{2}\\ \end{align*}
The whole chapter 7 in H.W.Goulds Combinatorial Identities for Stirling Numbers is devoted to this formula. An easily accessible proof can be found in New proofs of Melzak's identity by U. Abel, H.W. Gould and J. Quaintance.
Setting $f(x)=1$ and $y=\frac{1}{2}$ we obtain from (2) \begin{align*} \sum_{k=0}^n(-1)^k\binom{n}{k}\frac{1}{2k+1}=\frac{1}{\binom{\frac{1}{2}+n}{n}} \end{align*}
Since \begin{align*} \binom{\frac{1}{2}+n}{n}&=\frac{\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)\cdots\left(n+\frac{1}{2}-(n-1)\right)}{n!}\\ &=\frac{1}{2^n}\cdot\frac{\left(2n+1\right)\left(2n-1\right)\cdots\left(3\right)}{n!}\\ &=\frac{(2n+1)!!}{2^nn!}\\ &=\frac{(2n+1)!!}{(2n)!!} \end{align*} the claim follows.
- 108,315
First hint: consider the case where $a = 1$.
Second hint: Let $$I_n = \int_{x=0}^1 (1 - x^2)^n \, dx = \int_{x=0}^1 (1-x^2)^{n-1} - x^2 (1-x^2)^{n-1} \, dx = I_{n-1} - \int_{x=0}^1 x (x(1-x^2)^{n-1}) \, dx,$$ then with this last integral, perform integration by parts with the choice $$u = x, \quad du = dx, \quad dv = x(1-x^2)^{n-1} \, dx, \quad v = -\frac{1}{2n}(1-x^2)^n.$$ This yields a recursion relation for $I_n$, which you can then solve.
- 135,869
Take out $a$ as a common factor, giving $\frac{1}{a^{2n+1}} \, \int_0^1 (1 - y^2)^n dy = a^{2n+1} \int_0^1 (1 - y^2)^n dy$ then use the integral over $y$ is standard (or easily determined) and given as $\frac{(2n)!!}{(2n+1)!!}$.
- 1,214