Let $z\in \{z\in\mathbb{C}:|z|<1\}, \alpha>-1,\Gamma(s)$ is the gamma function.
How to prove $\sum_{n\geq 0}{\frac{\Gamma(n+2+\alpha)}{n!\Gamma(2+\alpha)}z^n}=\frac{1}{(1-z)^{2+\alpha}}$ ?
If $\alpha=0,$ then it is easy to get the above result. How can i prove the above general result?
So now we have
$$\sum_{n=0}^\infty \frac{(n+1+\alpha)^{(n)}}{n!} z^n$$ (underline in the notation of wikipedia) What you want for the pruported RHS would be $\binom{-2}{n}$ instead.
– AHusain Apr 04 '16 at 03:10