I can show the inequality when $a$ is close enough to $1$ (namely, $a\leq 1+ln(5/4)\approx 1.22$) or when $a$ is big enough (namely, $a \geq 1+\ln(5) \approx 2.6$). In the sequel $f(x)$ denotes $x+\ln(\frac{1}{x})$.
When $a$ is close to $1$. Let us put $w=\sqrt{e^{a-1}-1}$. The inequality then becomes $x_1+x_2\leq 2+3w^2$. Now I claim that when $w\in[0,\frac{1}{2}]$, one has
$$
\begin{array}{lcl}
x_1 & \leq & 1-\sqrt{2}w+\frac{4}{3}w^2 \\
x_2 & \leq & 1+\sqrt{2}w+\frac{5}{3}w^2 \\
\end{array}
$$
To check the first claim, let $g(w)=f(1-\sqrt{2}w+\frac{4}{3}w^2)-1-\ln(1+w^2)$. Then the derivative of $g$ is $g'(w)=\frac{w^3(\frac{4}{3}\sqrt{2}w-\frac{34}{9})}{(1+w^2)(1-\sqrt{2}w+\frac{4}{3}w^2)^2}<0$. So $g$ is decreasing on $(0,\frac{1}{2})$, whence $g(w)\leq g(0)=0$, proving the first claim.
To check the second claim, let $h(w)=f(1+\sqrt{2}w+\frac{5}{3}w^2)-1-\ln(1+w^2)$. Then the derivative of $h$ is $h'(w)=\frac{w^2(\frac{-5}{3}\sqrt{2}w^2-\frac{28}{9}w+sqrt(2)))}{(1+w^2)(1+\sqrt{2}w+\frac{5}{3}w^2)^2}$. So $h'$ has a unique zero in $(0,\frac{1}{2})$ ; since $h(0)=0$ and $h(\frac{1}{2})\approx 0.00091 >0$, we have $h(w)\geq 0$ for any $w\in(0,\frac{1}{2})$, proving the second claim.
When $a$ is big enough. Let us put $u=e^{a-1}$. The inequality then becomes $x_1+x_2+1\leq 3u$. Now I claim that when $u\geq 5$, one has
$$
\begin{array}{lcl}
x_1 & \leq & (3-e)u-1 \\
x_2 & \leq & eu \\
\end{array}
$$
To check the first claim, let $k(u)=f((3-e)u-1)-1-ln(u)$. Then the derivative of $k$ is $k'(w)=\frac{-1} {u((3-e)u-1)^2}<0$. So $k$ is decreasing on $(0,\infty)$, and since $k(5)\approx -1.05 <0$, this proves the first claim.
The second claim follows from the identity $f(eu)-1-ln(u)=\frac{1}{eu}$.