Let $R^\infty$ be the vector space of all sequence $\{a_j\}$ of real numbers. Put $\|\{a_j\}\|_n:= \sum_{j=0}^n |a_j|$. This collection of semi norms make this as Frechet space.
A set $B$ is bounded if every continuous seminorm is bounded on $B$. That is bounded set will be as $\{a=\{a_i\}: \sum_{i=0}^k |a_i|<M_k\text{ for some } M_k>0 \text{ and } \forall k\in \mathbb N\}.$
Can I have an explicit example of one bounded set and one unbounded set.