Option 1
Writing them out gives:$${1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, 4, \frac{1}{5}, 5, \frac{1}{6}, \frac{2}{5}, \frac{3}{4}, \frac{4}{3}, \frac{5}{2}, 6, \frac{1}{7}, \frac{3}{5}, \frac{5}{3}, 7, \frac{1}{8}, \frac{2}{7}, \frac{4}{5}, \frac{5}{4}, \frac{7}{2}, 8, \frac{1}{9}, \frac{3}{7}, \frac{7}{3}, 9, \frac{1}{10}, \frac{2}{9}, \frac{3}{8}, \frac{4}{7}, \frac{5}{6}, \frac{6}{5}, \frac{7}{4}, \frac{8}{3}, \frac{9}{2}, 10, \frac{1}{11}, \frac{5}{7}, \frac{7}{5}, 11, \frac{1}{12}, \frac{2}{11}, \frac{3}{10}, \frac{4}{9}, \frac{5}{8}, \frac{6}{7}, \frac{7}{6}, \frac{8}{5}, \frac{9}{4}, \frac{10}{3}, \frac{11}{2}, 12, \frac{1}{13}, \frac{3}{11}, \frac{5}{9}, \frac{9}{5}, \frac{11}{3}, 13, \frac{1}{14}, \frac{2}{13}, \frac{4}{11}, \frac{7}{8}, \frac{8}{7}, \frac{11}{4}, \frac{13}{2}, 14, \frac{1}{15}, \frac{3}{13}, \frac{5}{11}, \frac{7}{9}, \frac{9}{7}, \frac{11}{5}, \frac{13}{3}, 15, \frac{1}{16}, \frac{2}{15}, \frac{3}{14}, \frac{4}{13}, \frac{5}{12}, \frac{6}{11}, \frac{7}{10}, \frac{8}{9}, \frac{9}{8}, \frac{10}{7}, \frac{11}{6}, \frac{12}{5}, \frac{13}{4}, \frac{14}{3}, \frac{15}{2}, 16, \frac{1}{17}, \frac{5}{13}, \frac{7}{11}, \frac{11}{7}, \frac{13}{5}, 17, \frac{1}{18}, \frac{2}{17}, \frac{3}{16}, \frac{4}{15}, \frac{5}{14}, \frac{6}{13}, \frac{7}{12}, \frac{8}{11}, \frac{9}{10}, \frac{10}{9}, \frac{11}{8}, \frac{12}{7}, \frac{13}{6}, \frac{14}{5}, \frac{15}{4}, \frac{16}{3}, \frac{17}{2}, 18, \frac{1}{19}, \frac{3}{17}, \frac{7}{13}, \frac{9}{11}, \frac{11}{9}, \frac{13}{7}, \frac{17}{3}, 19, \frac{1}{20}, \frac{2}{19}, \frac{4}{17}, \frac{5}{16}, \frac{8}{13}, \frac{10}{11}, \frac{11}{10}, \frac{13}{8}, \frac{16}{5}, \frac{17}{4}, \frac{19}{2}, 20, \frac{1}{21}, \frac{3}{19}, \frac{5}{17}, \frac{7}{15}, \frac{9}{13}, \frac{13}{9}, \frac{15}{7}, \frac{17}{5}, \frac{19}{3}, 21, \frac{1}{22}, \frac{2}{21}, \frac{3}{20}, \frac{4}{19}, \frac{5}{18}, \frac{6}{17}, \frac{7}{16}, \frac{8}{15}, \frac{9}{14}, \frac{10}{13}, \frac{11}{12}, \frac{12}{11}, \frac{13}{10}, \frac{14}{9}, \frac{15}{8}, \frac{16}{7}, \frac{17}{6}, \frac{18}{5}, \frac{19}{4}, \frac{20}{3}, \frac{21}{2}, 22, \frac{1}{23}, \frac{5}{19}, \frac{7}{17}, \frac{11}{13}, \frac{13}{11}, \frac{17}{7}, \frac{19}{5}, 23, \frac{1}{24}, \frac{2}{23}, \frac{3}{22}, \frac{4}{21}, \frac{6}{19}, \frac{7}{18}, \frac{8}{17}, \frac{9}{16}, \frac{11}{14}, \frac{12}{13}, \frac{13}{12}, \frac{14}{11}, \frac{16}{9}, \frac{17}{8}, \frac{18}{7}, \frac{19}{6}, \frac{21}{4}, \frac{22}{3}, \frac{23}{2}, 24, \frac{1}{25}, \frac{3}{23}, \frac{5}{21}, \frac{7}{19}, \frac{9}{17}, \frac{11}{15}, \frac{15}{11}, \frac{17}{9}, \frac{19}{7}, \frac{21}{5}, \frac{23}{3}, 25, \frac{1}{26}, \frac{2}{25}, \frac{4}{23}, \frac{5}{22}, \frac{7}{20}, \frac{8}{19}, \frac{10}{17}, \frac{11}{16}, \frac{13}{14}, \frac{14}{13}, \frac{16}{11}, \frac{17}{10}, \frac{19}{8}, \frac{20}{7}, \frac{22}{5}, \frac{23}{4}, \frac{25}{2}, 26, \frac{1}{27}, \frac{3}{25}, \frac{5}{23}, \frac{9}{19}, \frac{11}{17}, \frac{13}{15}, \frac{15}{13}, \frac{17}{11}, \frac{19}{9}, \frac{23}{5}, \frac{25}{3}, 27, \frac{1}{28}, \frac{2}{27}, \frac{3}{26}, \frac{4}{25}, \frac{5}{24}, \frac{6}{23}, \frac{7}{22}, \frac{8}{21}, \frac{9}{20}, \frac{10}{19}, \frac{11}{18}, \frac{12}{17}, \frac{13}{16}, \frac{14}{15}, \frac{15}{14}, \frac{16}{13}, \frac{17}{12}, \frac{18}{11}, \frac{19}{10}, \frac{20}{9}, \frac{21}{8}, \frac{22}{7}, \frac{23}{6}, \frac{24}{5}, \frac{25}{4}, \frac{26}{3}, \frac{27}{2}, 28}$$
Counting then gives it in position 255.
Option 2
Alternatively you can add up terms in Euler Totient function until the 28th then do the case for 29 by hand. The first 28 add up to 241. The 29th term is 28 so we know that no terms with numerator plus denominator equals 29 cancel out. So adding 14 to 241 gives 255.