Let $q \in \mathbb C$, $|q|=1$ and $q^n \neq 1, \forall n \in \mathbb N$. Show that $\{q^n: n \in \mathbb N\}$ is dense in $S^1$.
My attempt: As $(q^n)$ is limited, there is subsequence $(q^{n_j})$ convergent. So given $\epsilon > 0, \exists j_0 \in \mathbb N, \quad |q^{n_j} - q^{n_k}| < \epsilon, \quad \forall j,k \geq j_0$. Supose that $n_j > n_k$, then $|q^{n_j} - q^{n_k}| = |q^{n_k}||q^{n_j - n_k} - 1| = |q^{n_j - n_k} - 1| < \epsilon, \quad \forall j, k \geq j_0$. So, there is a subsequence of $(q^n)$ that converges to $1$.
Using this fact, how can I ensure that for all $w \in S^1$ there is a subsequence of $(q^n)$ that converges to $w$?