I'm not sure but I think my solution is correct.
Generalized statement: $L/K$ - fields extension, $A,B\in M_{n}(K)$, $A\sim B$ over $L$. We need to prove, that $A\sim B$ over K. $$A\sim B \;\text over \;L \:\Longleftrightarrow\:\left(A-\lambda E\right)\approx\left(B-\lambda E\right) (\approx\text - matrix\; equivalence)\; \text over\; L[\lambda]$$
$$\left(A-\lambda E\right)\approx diag(A-\lambda E)\;\; \text and \;\left(B-\lambda E\right)\approx diag(B-\lambda E)$$ over $K[\lambda]$, $$diag(A-\lambda E)\approx diag(B-\lambda E)$$ over $L[\lambda]$ and $$diag(A-\lambda E)\sim diag(B-\lambda E)$$ over $K$ (permutation of diagonal elements), that means $$diag(A-\lambda E)\approx diag(B-\lambda E)$$ over $K[\lambda]$, that means $$\left(A-\lambda E\right)\approx\left(B-\lambda E\right)$$ over $K[\lambda]$ and $A\sim B$ over $K$.