assume $\mathcal{A}$ is a $\sigma$-algebra and $\xi$ is a r.v. and $\forall x\in \mathbb R$ $$\mathbb{E}\left[e^{ix\xi} \mid \mathcal{A}\right] = \mathbb{E} \left[ e^{ix\xi} \right]\tag{*}$$
try to prove: $\xi$ is independent of $\mathcal{A}$
what I have tried:
according to the def of conditional expectation, we get from (*): $\forall A\in\mathcal A$ $$\mathbb E\left[e^{ix\xi}1_A\right] = \mathbb{E}\left[e^{ix\xi}\right] \mathbb{E}\left[1_A\right] \tag{1}$$
then I tried to prove: $$\mathbb E\left[e^{ix\xi}e^{iy1_A}\right] = \mathbb{E}\left[e^{ix\xi}\right] \mathbb{E}\left[e^{iy1_A}\right]\tag{2}$$
if (2) holds, then $\xi$ and $1_A$ is independent, then $\xi$ is independent of $\mathcal{A}$.