As the other anwsers have stated, this is not true in the general case.
However, if you suppose $(a_n)$ non increasing, then you have $\lim\limits_{n \to \infty} n \cdot a_n = 0 $.
To see why, consider $\sum\limits_{k=n+1}^{2n} a_k$.
In one hand, $\sum\limits_{k=n+1}^{2n} a_k \ge \sum\limits_{k=n+1}^{2n} a_{2n} = n \cdot a_{2n} $.
On the other hand, $\sum\limits_{k=n+1}^{2n} a_k = \sum\limits_{k=0}^{\infty} a_k - \sum\limits_{k=0}^{n} a_k- \sum\limits_{k=2n+1}^{\infty} a_k \to 0 $ when $ n \to \infty$.
Therefore $\lim\limits_{n \to \infty} 2n \cdot a_{2n} = 0$.
And finally $(2n+1) \cdot a_{2n+1} \le (2n+1) \cdot a_{2n} = 2n \cdot a_{2n} + a_{2n} \to 0 $ when $ n \to \infty$.