$$I=\int_{0}^{\dfrac\pi4}\log(\cos(x))\mathop{\mathrm{d}x}$$ I can solve it if the limit is from $0$ to $\frac\pi2$. How to do it? I have done like this, tried not to use any knowledge of series but just simple integration rules. $I_1=\int_{0}^{\frac{\pi}{4}} \ln(\sin x)+\ln (\cos x) dx \\ =\int_{0}^{\frac{\pi}{4}}\ln\left(\frac{\sin 2x}{2}\right) dx \\ =-\frac{\pi}{4}\ln 2 -\frac{\pi}{4}\ln 2 \\ =-\frac{\pi}{2}\ln 2$
Now ,
$I_2=\int_{0}^{\frac{\pi}{4}} \ln(\cos x)-\ln(\sin x) dx \\ =\int _{0}^{\frac{\pi}{4}} \ln(\cot x) dx \\ =-\int_{-\infty}^{0} \frac{(e^z)^2}{1+(e^z)^2} dz$
Say $$[\cot x=e^z \implies dx=-\frac{e^z}{1+(e^z)^2} dz]$$ Now from above, $$=-\int_{0}^{\infty} \frac{1}{1+(e^z)^2} dz \\ =-\int_{0}^{\infty} \frac{e^{-z}}{e^z+e^{-z}} dz \\ =-\frac{1}{2} \int_{0}^{\infty} 1-\frac{e^z-e^{-z}}{e^z+e^{-z}}dz \\ =-\frac{1}{2}\left[z-\ln (e^z+e^{-z})\right]^\infty_0 \\ =-\frac{1}{2}\ln 2$$