How should I evaluate the sum: $\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}$ ?
I have no relevant observations or partial results so far.
Any kind of help or advice would be truly appreciated!
How should I evaluate the sum: $\sum_{k=1}^{n}\frac{1}{k}\binom{n}{k}$ ?
I have no relevant observations or partial results so far.
Any kind of help or advice would be truly appreciated!
Use binom of Newton:
$$(1+x)^n=\sum_{k=0}^n \binom nk x^k\stackrel{\text{integ.}}\implies\frac{(1+x)^{n+1}}{n+1}=\sum_{k=0}^n\binom nk\frac{x^{k+1}}{k+1}+C\;,\;\;C=\text{ constant}$$
Now susbtitute $\;x=0\;$ to find the constant, and then $\;x=1\;$ and do some little algebra.