How can we show that$^\ast$ $$\frac{\rm d}{{\rm d}x}\sum_{n\in\mathbb N_0}x^n=\sum_{n\in\mathbb N_0}\frac{\rm d}{{\rm d}x}x^n\color{blue}{=\sum_{n\in\mathbb N_0}nx^{n-1}}\tag 1$$ for some fixed $x\in[0,1)$?
Clearly, $$\sum_{n\in\mathbb N_0}x^n=\frac1{1-x}\tag 2$$ and hence, by a well-known theorem, it's sufficient to show that the rhs of $(1)$ is convergent. How can we do so?
$^\ast$ Let's define $0^0:=1$, $1/0:=\infty$ and $0\cdot\infty:=0$.