Is there a closed form for this integral?
$\displaystyle \int_0^1\frac{\ln(1-x)}{x}\text{Li}_3\left({x} \right)\,dx\\$
All I have been able to find, so far, is a numeric approximation of $-1.13348$
Is there a closed form for this integral?
$\displaystyle \int_0^1\frac{\ln(1-x)}{x}\text{Li}_3\left({x} \right)\,dx\\$
All I have been able to find, so far, is a numeric approximation of $-1.13348$
Yes there is: $$\mathcal I=\zeta(2)\zeta(3)-3\zeta(5).$$ See e.g. this answer.
$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Leftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[2]{\,\mathrm{Li}_{#1}\left(\,{#2}\,\right)} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align} &\color{#f00}{\int_{0}^{1}{\ln\pars{1 - x} \over x}\,\Li{3}{x}\,\dd x} = \int_{0}^{1}{\ln\pars{1 - x} \over x}\, \sum_{n = 1}^{\infty}{x^{n} \over n^{3}}\,\dd x \\[5mm] = &\ \sum_{n = 1}^{\infty}{1 \over n^{3}}\int_{0}^{1}\ln\pars{1 - x}x^{n - 1}\,\dd x \label{1}\tag{1} \end{align}
$\ds{\sum_{n = 1}^{\infty}{H_{n} \over n^{4}} = {3\zeta\pars{5} - {1 \over 6}\,\pi^{2}}\,\zeta\pars{3} - }$ is given as formula $\pars{20}$ in the MathWorld Harmonic Number page and it has been evaluated in a 1995 David Borwein and Jonathan Borwein paper.
\begin{align} I&=\int_0^1\frac{\ln(1-x)}{x}\operatorname{Li_3}(x)\ dx=\sum_{n=1}^\infty\frac1{n^3}\int_0^1x^{n-1}\ln(1-x)\ dx=-\sum_{n=1}^\infty\frac{H_n}{n^4}=\zeta(2)\zeta(3)-3\zeta(5) \end{align}
I recommend using following recursion:
$$\operatorname{Li}_{0}(z) =\frac{z}{1-z}; \quad \operatorname{Li}_{n+1}(z) = \int_0^z \frac{\operatorname{Li}_n(t)}{t}$$