I know that series $\sum_{n=1}^\infty \arcsin(\frac{1}{\sqrt n})$ diverges using the comparison test: $\arcsin(\frac{1}{\sqrt n}) \ge \frac{1}{\sqrt n} \ge \frac{1}{n} \ge 0$ for $n=1, 2, ...$ But how can I prove that $\arcsin(\frac{1}{\sqrt n}) \ge \frac{1}{\sqrt n}$?
I think one can show that $\sin x \le x$, so $\arcsin x \ge x$ for $x \ge 1$, but how can i do that if I am not allowed to use Taylor series? Basically, I am only allowed to use the facts from Calculus I.