Find the maxima of $(x_1x_2\ldots x_n)^2$ under the constraint $x_1^2+x_2^2+\ldots+x_n^2=1$. Using this result prove that for positive numbers $a_1,a_2,\ldots,a_n$ $$(a_1a_2\ldots a_n)^{1/n} \leq \frac{a_1+a_2+\ldots +a_n}{n}$$
My Answer: I solved the first part using Lagrange multipliers and the maximum is attained at $x_1=x_2=\ldots =x_n =\frac{1}{\sqrt{n}}$.
The part I need help with is how do I use this information to prove the AM-GM inequality?
It holds that $\displaystyle{\sum_{k=1}^nx_k^2=\sum_{k=1}^n\frac{a_k}{\displaystyle{\sum_{k=1}^na_k}}=\frac{1}{\displaystyle{\sum_{k=1}^na_k}}\cdot \sum_{k=1}^na_k=1}$ since this condition is satisfied we can use the first result?
– Mary Star Jan 14 '21 at 09:35