1

I am really confused about solving it.

$$\int_{-2}^2 \frac{x^2}{1+5^x} \, dx $$

2 Answers2

2

HINT:

Use $\displaystyle I=\int_a^bf(x)\ dx=\int_a^bf(a+b-x)\ dx$

$\displaystyle I+I=\int_a^bf(x)\ dx+\int_a^bf(a+b-x)\ dx=\int_a^b[f(x)+f(a+b-x)]\ dx$

  • 1
    Bang on target!! Awesome Hint... – SchrodingersCat Mar 22 '16 at 08:16
  • @GautamChandna, Reminds me of http://math.stackexchange.com/questions/801278/how-to-solve-this-integral-int-11-fracx4ax1dx/801284#801284 and http://math.stackexchange.com/questions/741580/integral-int-pi-2-pi-2-frac12007x1-cdot-frac-sin2008x-si – lab bhattacharjee Mar 22 '16 at 08:22
  • @labbhattacharjee hmm so almost a duplicate, was looking for it for a long time, wasnt able to find it. thanks for your help again! – Gautam Chandna Mar 22 '16 at 08:28
0

There is a solution in special functions, achieved via use of substitutions.

$\int_{-2}^2 \frac{x^2}{1+5^x} \, dx$

Let $t=5^x$

$x= \log_5(t)$

$dx = \frac{dt}{\log_5(t) \ln(5)}$

$t(-2)=\frac{1}{25}; t(2)=25$

$\int_{-2}^2 \frac{x^2}{1+5^x} \, dx = $$\int_{\frac{1}{25}}^{25} \frac{(\log_5(t))^2}{1+t} \, \frac{dt}{\log_5(t) \ln(5)}$

$\int_{\frac{1}{25}}^{25} \frac{\log_5(t)}{1+t} \, \frac{dt}{ \ln(5)}$

$\frac{1}{ (\ln(5))^2} \int_{\frac{1}{25}}^{25} \frac{\ln(t)}{1+t} \, dt$

This last integral is special. It is closely related to the polylogarithm, and in particular, the dilogarithm.

By using the properties of these functions and the regular logarithm, I am sure you could reason out exactly what WolframAlpha tells us this is equal to:

$\frac{1}{ (\ln(5))^2} [Li_2(-t)+\log(t)\log(t+1)]^{25}_{\frac{1}{25}}$

$\frac{1}{ (\ln(5))^2} [[Li_2(-25)+\log(25)\log(26)]-[Li_2(-\frac{1}{25})+\log(\frac{1}{25})\log(\frac{26}{25})]]$ ≈1.493

KR136
  • 1,810