It's going to be impossible to prove that $f + g$ is integrable this way.
You ultimately want to show that
$$\underline{\int}_a^bf + \underline{\int}_a^bg \leqslant \underline{\int}_a^b(f + g) \leqslant \overline{\int}_a^b(f + g) \leqslant \overline{\int}_a^bf + \overline{\int}_a^bg ,$$
in order to show that integrability of $f + g$ follows from that of $f$ and $g$.
Note that on any subinterval $I$ of a partition
$$\inf_{x \in I}f(x) + \inf_{x \in I}g(x) \leqslant \inf_{x \in I}[f(x) + g(x)],$$
since for all $x \in I$,
$$f(x) + g(x) \geqslant \inf_{x \in I}f(x) + \inf_{x \in I}g(x).$$
Hence, forming lower sums we get,
$$L(f,P) + L(g,P) \leqslant L(f+g,P).$$
This is the correct starting point.
Assume that
$$\underline{\int}_a^b [f(x)+g(x)] \, dx < \underline{\int}_a^b f(x) \, dx + \underline{\int}_a^b g(x) \,dx ,$$
and show that this leads to a contradiction as follows.
Assuming this were true we have
$$\underline{\int}_a^b [f(x)+g(x)] \, dx - \underline{\int}_a^b g(x) \,dx < \underline{\int}_a^b f(x) \, dx,$$
and there exists a partition $P$ such that
$$\underline{\int}_a^b [f(x)+g(x)] \, dx - \underline{\int}_a^b g(x) \,dx < L(P,f) \leqslant \underline{\int}_a^b f(x) \, dx.$$
Hence,
$$\underline{\int}_a^b [f(x)+g(x)] \, dx - L(P,f) < \underline{\int}_a^b g(x) \, dx,$$
and there exists a partition $P’$ such that
$$\underline{\int}_a^b [f(x)+g(x)] \, dx - L(P,f) < L(P’,g) \leqslant \underline{\int}_a^b g(x) \, dx,$$
and
$$\underline{\int}_a^b [f(x)+g(x)] \, dx < L(P,f) + L(P’,g) .$$
Now take a common refinement of the partitions $Q = P \cup P'$. Lower sums increase as partitions are refined and we have $L(Q,f) \geqslant L(P,f)$ and $L(Q,g) \geqslant L(P’,g).$
It follows that
$$L(Q,f+g) \leqslant \underline{\int}_a^b [f(x)+g(x)] \, dx < L(P,f) + L(P’,g) \leqslant L(Q,f) + L(Q,g).$$
This contradicts the inequality for lower sums, and, therefore
$$\underline{\int}_a^b f(x) \, dx + \underline{\int}_a^b g(x) \, dx \leqslant \underline{\int}_a^b [f(x) + g(x)] \, dx. $$