It is a counterexample from an article called (A General Q-Matrix) by (JOHN IVIE):
http://www.fq.math.ca/Scanned/10-3/ivie-a.pdf
Define a matrix $Q_r$ by:
$$
Q_r=\left({\begin{array}{ccccccc}
1&1&0&0&\cdots&0&0\\
1&0&1&0&\ddots&\ddots&\vdots\\
\vdots&\vdots&\ddots&1&\ddots&\ddots&\vdots\\
\vdots&\vdots&\ddots&\ddots&\ddots&\ddots&\vdots\\
\vdots&\vdots&\ddots&\ddots&\ddots&1&0\\
1&\vdots&\ddots&\ddots&\ddots&\ddots&1\\
1&0&\cdots&\cdots&\cdots&\cdots&0\end{array}}\right)_{(r)\times (r)}\, .
$$
Now let us define the generalized Fibonacci sequence $(f_{n,r})$ for $(r\geq 2)$ by:
$$f_{n,r}=f_{n-1,r}+f_{n-2,r}+\cdots+f_{n-r,r}.$$
with $(f_{0,r}=f_{1,r}=\cdots=f_{r-2,r}=0 \, , \, f_{r-1,r}=1)$ . Note that $r = 2$ gives the Fibonacci number. we can
see that $(Q_r^n)$ has a closed form based on $(f_{n,r})$.
We now use the matrix $Q_r$ to show that the product of two elements of finite order In a non-abellan group
is not necessarily of finite order. Let:
$$
R_{r}=\left({\begin{array}{ccccccc}
-1&0&0&\cdots&0&0\\
0&1&0&\ddots&\ddots&\vdots\\
\vdots&\ddots&1&\ddots&\ddots&\vdots\\
\vdots&\ddots&\ddots&\ddots&\ddots&\vdots\\
\vdots&\ddots&\ddots&\ddots&1&0\\
0&0&0&\cdots&0&1\end{array}}\right)$$
$$
S_{r}=\left({\begin{array}{ccccccc}
-1&-1&0&\cdots&\cdots&0\\
1&0&1&\ddots&\ddots&\vdots\\
\vdots&\vdots&\ddots&\ddots&\ddots&\vdots\\
\vdots&\vdots&\ddots&\ddots&\ddots&0\\
\vdots&\vdots&\ddots&\ddots&\ddots&1\\
1&0&0&\cdots&\cdots&0\end{array}}\right)
$$
be elements of the group of Invertible square matrices, then:
$$R_r^2=S_r^{r+1}=I_r\, .$$
so $(R_r)$ and $(S_r)$ are of finite order, but ${(R_rS_r)}^n=Q_r^n \neq I_r$ for all n,
so that $(R_rS_r)$ Is not of finite order.