Let $n$ be a positive integer. Assume $ \lim_{x \to \infty} f(x)$ and $ \lim_{x \to \infty} f^{(n)}(x)$ are both real numbers. Prove that $$ \lim_{x \to \infty} f^{n}(x) = 0$$
We have that $$\lim_{x \to \infty} \frac{f(x)+x^n}{x^n} = \lim_{x \to \infty} \frac{f'(x)+nx^{n-1}}{nx^{n-1}} = \cdots = \lim_{x \to \infty} \frac{f^{(n)}(x)+n!}{n!} = \lim_{x \to \infty}f^{(n+1)}(x) = 1,$$ by L'Hospital's rule. But did I make a mistake or how does this show that $\displaystyle \lim_{x \to \infty} f^{n}(x) = 0$?