Need help on solving integrals using partial integration. As I have only solved ones with Newton-Leibniz, I don't know how to solve this types: $$\int_0^{\pi/4} \frac{x\sin(x)}{\cos^2(x)}dx$$
Asked
Active
Viewed 55 times
2 Answers
2
Hint:
$$\int\frac{x\sin x}{\cos^2x}\,dx=\int x\cdot\frac{\sin{x}}{\cos{x}}\cdot\frac{1}{\cos{x}}\,dx=\int x\tan{x}\sec{x}\,dx=x\sec{x}-\int{\sec{x}\,dx}$$
See Ways to evaluate $\int \sec \theta \, \mathrm d \theta$ on how to integrate $\sec{x}$.
2
First, use integration by parts:
$$\int uv'\,dx=uv-\int u'v\,dx\;,\;\;\text{with}\;\;u=x\;,\;\;v'=\frac{\sin x}{\cos^2x}$$
Observe also that
$$\int\frac{f'}{f^2}=-\frac1f$$
and also that
$$\int\frac{dx}{\cos x}=\int\frac{\cos x}{\cos^2x}dx=\int\frac{\cos x}{1-\sin^2x}dx=\frac12\int\left(\frac{\cos x}{1-\sin x}+\frac{\cos x}{1+\sin x}\right)dx$$

DonAntonio
- 211,718
- 17
- 136
- 287