HINT:
For $\Delta\in\mathbb{R}^{\ge0}\land V\in\mathbb{R}^{+}$, define $\Theta{\left(V,\Delta\right)}$ via the integral,
$$\small{\Theta{\left(V,\Delta\right)}:=\int_{0}^{\pi}\mathrm{d}\varphi\,\sin^{2}{\left(\frac{\varphi}{2}\right)}\int_{0}^{\pi}\mathrm{d}\varphi^{\prime}\,\cos^{2}{\left(\frac{\varphi^{\prime}}{2}\right)}\int_{V\cos{\left(\varphi^{\prime}\right)}-\Delta}^{V\cos{\left(\varphi\right)}}\mathrm{d}\epsilon\,\epsilon\left(\epsilon+\Delta\right)\,H{\left(\cos{\left(\varphi\right)}-\cos{\left(\varphi^{\prime}\right)}+\frac{\Delta}{V}\right)}}.$$
Assume $0<\Delta<2V$. Then, substituting $\cos{\left(\varphi\right)}=t$ and $\cos{\left(\varphi^{\prime}\right)}=u$, we find:
$$\begin{align}
\Theta{\left(V,\Delta\right)}
&=\small{\int_{0}^{\pi}\mathrm{d}\varphi\,\sin^{2}{\left(\frac{\varphi}{2}\right)}\int_{0}^{\pi}\mathrm{d}\varphi^{\prime}\,\cos^{2}{\left(\frac{\varphi^{\prime}}{2}\right)}\int_{V\cos{\left(\varphi^{\prime}\right)}-\Delta}^{V\cos{\left(\varphi\right)}}\mathrm{d}\epsilon\,\epsilon\left(\epsilon+\Delta\right)\,H{\left(\cos{\left(\varphi\right)}-\cos{\left(\varphi^{\prime}\right)}+\frac{\Delta}{V}\right)}}\\
&=\small{\int_{-1}^{1}\mathrm{d}t\,\frac{1-t}{2\sqrt{1-t^{2}}}\int_{-1}^{1}\mathrm{d}u\,\frac{1+u}{2\sqrt{1-u^{2}}}\int_{Vu-\Delta}^{Vt}\mathrm{d}\epsilon\,\epsilon\left(\epsilon+\Delta\right)\,H{\left(t-u+\frac{\Delta}{V}\right)}}\\
&=\small{\frac{V^{3}}{4}\int_{-1}^{1}\mathrm{d}t\,\frac{1-t}{\sqrt{1-t^{2}}}\int_{-1}^{1}\mathrm{d}u\,\frac{1+u}{\sqrt{1-u^{2}}}\int_{u-\frac{\Delta}{V}}^{t}\mathrm{d}v\,v\left(v+\frac{\Delta}{V}\right)\,H{\left(t-u+\frac{\Delta}{V}\right)}};~~~\small{\left[\frac{\epsilon}{V}=v\right]}.\\
\end{align}$$
Let $a$ denote the parameter $a:=\frac{\Delta}{V}$. Note that $\left(0<a<2\land-1< t<1\right)$ implies
$$1-a<t<1\iff0<t-1+a<t-u+a,$$
and
$$-1<t<1-a\implies\left(-1<u<t+a\iff0<t-u+a\right).$$
Thus,
$$\begin{align}
\Theta{\left(V,\Delta\right)}
&=\small{\frac{V^{3}}{4}\int_{-1}^{1}\mathrm{d}t\,\frac{1-t}{\sqrt{1-t^{2}}}\int_{-1}^{1}\mathrm{d}u\,\frac{1+u}{\sqrt{1-u^{2}}}\int_{u-a}^{t}\mathrm{d}v\,v\left(v+a\right)\,H{\left(t-u+a\right)}}\\
&=\frac{V^{3}}{4}\int_{1-a}^{1}\mathrm{d}t\,\frac{1-t}{\sqrt{1-t^{2}}}\int_{-1}^{1}\mathrm{d}u\,\frac{1+u}{\sqrt{1-u^{2}}}\int_{u-a}^{t}\mathrm{d}v\,v\left(v+a\right)\\
&~~~~~\small{+\frac{V^{3}}{4}\int_{-1}^{1-a}\mathrm{d}t\,\frac{1-t}{\sqrt{1-t^{2}}}\int_{-1}^{1}\mathrm{d}u\,\frac{1+u}{\sqrt{1-u^{2}}}\int_{u-a}^{t}\mathrm{d}v\,v\left(v+a\right)\,H{\left(t-u+a\right)}}\\
&=\frac{V^{3}}{4}\int_{1-a}^{1}\mathrm{d}t\,\frac{1-t}{\sqrt{1-t^{2}}}\int_{-1}^{1}\mathrm{d}u\,\frac{1+u}{\sqrt{1-u^{2}}}\int_{u-a}^{t}\mathrm{d}v\,v\left(v+a\right)\\
&~~~~~+\frac{V^{3}}{4}\int_{-1}^{1-a}\mathrm{d}t\,\frac{1-t}{\sqrt{1-t^{2}}}\int_{-1}^{t+a}\mathrm{d}u\,\frac{1+u}{\sqrt{1-u^{2}}}\int_{u-a}^{t}\mathrm{d}v\,v\left(v+a\right).\\
\end{align}$$
Now the required integrals have algebraic integrands and are also step-function free, making it more susceptible to the usual integration techniques.
Also, I should point out that my comment above that the integral is ultimately elliptic may have been too hasty. Unless there is fortuitous cancellations, the integration actually require generalized hypergeometric functions. Good luck!
@DavidH, it's electrons scattering off a magnetic impurity. I have an incoming electron with an incidence angle $\phi$ and energy $\varepsilon$, and I'm calculating the probability that it will scatter at an angle $\phi'$ and energy $\varepsilon + \Delta$, and by doing so flip the spin of the magnetic impurity.
– Elina Mar 21 '16 at 12:38