I can't get this to $ = \frac{0}{0}$ form so I can use l'Hospital rule $$\lim_{x \to \infty} x - x^{2}\ln\left(1 + \frac{1}{x}\right)$$
tips?
[EDIT] $$\lim_{x \to 0} \frac{1}{x} - \frac{\ln(1 + x)}{x^{2}}$$ second term $$\lim_{x \to 0} \frac{\ln(1 + x)}{x^{2}} = \lim_{x \to 0} \frac{\frac{1}{1 + x}}{2x} = 2\lim_{x \to 0} \frac{x}{x+1} = 0$$ first term $$ \lim_{x \to 0} \frac{1}{x} = \infty$$
is this okey?