2

I can't get this to $ = \frac{0}{0}$ form so I can use l'Hospital rule $$\lim_{x \to \infty} x - x^{2}\ln\left(1 + \frac{1}{x}\right)$$

tips?

[EDIT] $$\lim_{x \to 0} \frac{1}{x} - \frac{\ln(1 + x)}{x^{2}}$$ second term $$\lim_{x \to 0} \frac{\ln(1 + x)}{x^{2}} = \lim_{x \to 0} \frac{\frac{1}{1 + x}}{2x} = 2\lim_{x \to 0} \frac{x}{x+1} = 0$$ first term $$ \lim_{x \to 0} \frac{1}{x} = \infty$$

is this okey?

3SAT
  • 7,512
tomtom
  • 373

2 Answers2

2

Letting $y=1/x$ gives

$$\lim_{y\to 0} \frac{y-\ln(1+y)} {y^2}. $$

I think you can see it now!

0

$t=1/x$ so $x=1/t$

$$\lim_{t\to 0} 1/t-(1/t)^2\ln(1+t) $$

$$=\lim_{t\to 0} \frac{t-\ln(1+t)}{t^2}$$

L'Hopital:

$$=\lim_{t\to 0} \frac{1-1/(t+1)} {2t} $$

$$=\frac 1 2\lim_{t\to 0} \frac{t} {\frac{(t+1)(t(t+1))}{t+1}}$$

assume $\frac{t}{t+1}\neq 0$

$$=\frac 1 2\lim_{t\to 0}\frac{1}{1+t}=\color{red}{\frac 1 2}$$

3SAT
  • 7,512