Since $\pi\gt3$, each interval of the form $[{(2k+1)\pi\over2}-{\pi\over6},{(2k+1)\pi\over2}+{\pi\over6}]$ contains an integer $n_k$ (because each such interval is of length $\pi/3\gt1$). When $k$ is even, $\sin n_k\gt\sin{\pi\over3}={\sqrt3\over2}$ so that
$${\sqrt{n_{2k}}\over n_{2k}^{\sin n_{2k}}}\lt{1\over n_{2k}^{(\sqrt3-1)2}}\to0$$
When $k$ is odd, $\sin n_k\lt-\sin{\pi\over3}=-{\sqrt3\over2}$ so that
$${\sqrt{n_{2k+1}}\over n_{2k+1}^{\sin n_{2k+1}}}\gt n_{2k+1}^{(\sqrt3+1)2}\to\infty$$
This is enough to conclude that limit $\lim_{n\to\infty}{\sqrt n\over n^{\sin n}}$ does not exist.
So $\liminf a_n \leq -1/2$ and $\limsup a_n \geq 1/2 \Rightarrow \liminf a_n \neq \limsup a_n$.
– christina_g Mar 17 '16 at 22:03