$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
Question:
$\ds{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x\,,\quad
a \in \mathbb{R}}$
\begin{align}
&\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x}
=
\int_{0}^{\pi/2}{1 - \cos\pars{2ax} \over 1 - \cos\pars{2x}}\,\dd x =
\half\int_{0}^{\pi}{1 - \cos\pars{ax} \over 1 - \cos\pars{x}}\,\dd x
\\[3mm] = &\
{1 \over 4}\int_{-\pi}^{\pi}{1 - \cos\pars{ax} \over 1 - \cos\pars{x}}\,\dd x =
{1 \over 4}\,\Re\int_{-\pi}^{\pi}{1 + \verts{a}x\ic - \expo{\verts{a}x\ic} \over 1 - \cos\pars{x}}\,\dd x
\\[3mm] = &\
{1 \over 4}\,\Re\oint_{\verts{z} = 1}{1 + \verts{a}\ln\pars{z} - z^{\verts{a}}
\over 1 - \pars{z + z^{-1}}/2}\,{\dd z \over \ic z} =
\half\,\Im\oint_{\verts{z} = 1}
{z^{\verts{a}} - \verts{a}\ln\pars{z} - 1 \over \pars{z - 1}^{2}}\,\dd z
\end{align}
We'll choose the $z^{\verts{a}}$ and $\ln\pars{z}$ branch-cuts along the negative $x$-axis with $z = 0$ as their branch points. Then, the integration contour is a key-hole one which doesn't enclose any pole such that the whole contribution to the integral comes from integrals above and below the branch-cuts. Namely,
\begin{align}
&\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x}
\\[5mm] = &\
-\,\half\,\Im\int_{-1}^{0}{\pars{-x}^{\verts{a}}\exp\pars{\pi\verts{a}\ic}
- \verts{a}\bracks{\ln\pars{-x} + \ic\pi} - 1 \over \pars{x - 1}^{2}}\,\dd x
\\[3mm] & -\
\half\,\Im\int_{0}^{-1}{\pars{-x}^{\verts{a}}\exp\pars{-\pi\verts{a}\ic}
- \verts{a}\bracks{\ln\pars{-x} - \ic\pi} - 1 \over \pars{x - 1}^{2}}\,\dd x
\\[5mm] = &\
-\,\half\,\Im\int_{0}^{1}{x^{\verts{a}}\exp\pars{\pi\verts{a}\ic}
- \verts{a}\bracks{\ln\pars{x} + \ic\pi} - 1 \over \pars{1 + x}^{2}}\,\dd x
\\[3mm] & +\
\half\,\Im\int_{0}^{1}{x^{\verts{a}}\exp\pars{-\pi\verts{a}\ic}
- \verts{a}\bracks{\ln\pars{x} - \ic\pi} - 1 \over \pars{1 + x}^{2}}\,\dd x
\\[5mm] = &\
-\sin\pars{\pi\verts{a}}\int_{0}^{1}{x^{\verts{a}} \over \pars{1 + x}^{2}}
\,\dd x
+ \pi\verts{a}\int_{0}^{1}{\dd x \over \pars{1 + x}^{2}}
\\[3mm] & =
\half\,\pi\verts{a} -
\sin\pars{\pi\verts{a}}\int_{0}^{1}{x^{\verts{a}} \over \pars{1 + x}^{2}}\,\dd x
\end{align}
Integrating by parts:
\begin{align}
&\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x}
\\[3mm] = &\
\half\,\pi\verts{a} + \half\,\sin\pars{\pi\verts{a}} -
\verts{a}\sin\pars{\pi\verts{a}}\int_{0}^{1}{x^{\verts{a} - 1} \over 1 + x}
\,\dd x
\\[3mm] = &\
\half\,\pi\verts{a} + \half\,\sin\pars{\pi\verts{a}} +
\verts{a}\sin\pars{\pi\verts{a}}\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 + x}
\,\dd x -
\verts{a}\sin\pars{\pi\verts{a}}\int_{0}^{1}{\dd x \over 1 + x}
\\[3mm] = &\
\half\,\pi\verts{a} + \bracks{\half - \verts{a}\ln\pars{2}}
\sin\pars{\pi\verts{a}} +
a\sin\pars{\pi a}\color{#00f}{\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 + x}
\,\dd x}\tag{1}
\end{align}
The "$\color{#00f}{blue\ integral}$" is evaluated as follows:
\begin{align}
&\color{#00f}{%
\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 + x}\,\dd x} =
\int_{0}^{1}\pars{1 - x^{\verts{a} - 1}}
\pars{{1 \over 1 + x} + {1 \over 1 - x}}\,\dd x -
\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x
\\[3mm] = &\
2\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x^{2}}\,\dd x -
\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x =
\int_{0}^{1}{x^{-1/2} - x^{\verts{a}/2 - 1} \over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x
\\[3mm] & =
\int_{0}^{1}{1 - x^{\verts{a}/2 - 1} \over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{-1/2} \over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{\verts{a} - 1} \over 1 - x}\,\dd x
\\[3mm] = &\
\bracks{\Psi\pars{{\verts{a} \over 2}} + \gamma}\ -\
\overbrace{\bracks{\Psi\pars{\half} + \gamma}}^{\ds{-2\ln\pars{2}}}\ -\
\bracks{\Psi\pars{\verts{a}} + \gamma}
\\[3mm] = &\ \color{#00f}{%
2\ln\pars{2} + \bracks{\Psi\pars{{\verts{a} \over 2}} - \Psi\pars{\verts{a}}}}
\end{align}
In replacing this results in $\pars{1}$, we find:
\begin{align}
&\color{#f00}{\int_{0}^{\pi/2}{\sin^{2}\pars{ax} \over \sin^{2}\pars{x}}\,\dd x}
\\[3mm] = &\
\color{#f00}{\half\,\pi\verts{a} + \bracks{\verts{a}\ln\pars{2} + \half}\sin\pars{\pi\verts{a}} +
a\sin\pars{\pi a}
\bracks{\Psi\pars{{\verts{a} \over 2}} - \Psi\pars{\verts{a}}}}
\end{align}