We are given the recursion relation
\begin{align*}
a_1 & = 1\\
a_2 & = 3\\
a_{n + 1} & = a_{n - 1} + a_{n}, n \geq 2
\end{align*}
Let $P(n)$ be the statement $a_n < \left(\frac{7}{4}\right)^n$.
We wish to prove $P(n)$ holds for all positive integers $n$. Since each term save the first two is expressed in terms of the preceding two terms, we must prove two base cases. They are $P(1)$ and $P(2)$.
Let $n = 1$. Then
$$a_1 = 1 = \frac{4}{4} < \frac{7}{4} = \left(\frac{7}{4}\right)^1$$
so $P(1)$ holds.
Let $n = 2$. Then
$$a_2 = 3 = \frac{48}{16} < \frac{49}{16} = \left(\frac{7}{4}\right)^2$$
so $P(2)$ holds.
To prove $P(n)$ by strong induction, we assume that $P(n)$ holds for each integer $n \leq m$, where $m \geq 2$. In particular, we may assume that $P(m - 1)$ and $P(m)$ both hold. With that in mind, we then let $n = m + 1$.
\begin{align*}
a_{m + 1} & = a_{m - 1} + a_m && \text{by definition}\\
& < \left(\frac{7}{4}\right)^{m - 1} + \left(\frac{7}{4}\right)^m && \text{by the induction hypothesis}\\
& = \left(\frac{7}{4}\right)^{m - 1}\left(1 + \frac{7}{4}\right)\\
& = \left(\frac{7}{4}\right)^{m - 1} \cdot \frac{11}{4}\\
& < \left(\frac{7}{4}\right)^{m - 1} \cdot \frac{49}{16}\\
& = \left(\frac{7}{4}\right)^{m - 1} \cdot \left(\frac{7}{4}\right)^2\\
& = \left(\frac{7}{4}\right)^{m + 1}
\end{align*}
Since we have established that $P(1)$ and $P(2)$ hold and $P(m + 1)$ holds if $P(n)$ holds for each integer $n \leq m$, $P(n)$ holds for all positive integers.