I have to prove that $\sum_{0}^{n}(-1)^i\binom{n}{i} = 0$,
I know i have to use the binomial theorem,But i dont know how.
Thanks.
I have to prove that $\sum_{0}^{n}(-1)^i\binom{n}{i} = 0$,
I know i have to use the binomial theorem,But i dont know how.
Thanks.
$$ 0 = \bigl((1+ (-1)\bigr)^n = \sum_{i=0}^n \binom ni 1^{n-i}(-1)^i = \sum_{i=0}^n \binom ni (-1)^i $$
The Binomial Theorem: $$(x+y)^n = \sum\limits_{i=0}^n \binom{n}{i}x^{n-i}y^i$$
For example $(x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4$
Using the above, notice what happens when $x=1$ and $y=-1$
$0=(1-1)=(1+(-1))^n=\sum\limits_{i=0}^n\binom{n}{i}1^{n-i}(-1)^i=\sum\limits_{i=0}^n\binom{n}{i}(-1)^i$
In general, with other sums like this, one can throw in additional factors of $1$ to an arbitrary power to notice the pattern.
For example, $\sum\limits_{i=0}^n\binom{n}{i} = \sum\limits_{i=0}^n\binom{n}{i}(1)^i(1)^{n-i} = (1+1)^n = 2^n$