Possible Duplicate:
Explain why calculating this series could cause paradox?
Using the power series expansion $\ln(x+1)=\sum _{k=1}^\infty \frac{(-1)^{k+1}}{k}x^k$ we have $\ln(2)=(1-\frac{1}{2})+(\frac{1}{3}-\frac{1}{4})+\cdots+(\frac{1}{2k-1}-\frac{1}{2k})+\cdots=\sum _{k=1}^\infty (\frac{1}{2k-1}-\frac{1}{2k})$. Let's rearrange the terms of this sequence so that two negative terms follow each positive term: $\ln(2)=(1-\frac{1}{2}-\frac{1}{4})+(\frac{1}{3}-\frac{1}{6}-\frac{1}{8})+\cdots+(\frac{1}{2k-1}-\frac{1}{4k-2}-\frac{1}{4k})+\cdots=\sum _{k=1}^\infty (\frac{1}{2k-1}-\frac{1}{4k-2}-\frac{1}{4k})$. However, $\frac{1}{2k-1}-\frac{1}{4k-2}-\frac{1}{4k}=\frac{1}{2}(\frac{1}{2k-1}-\frac{1}{2k})$; therefore, $\sum _{k=1}^\infty (\frac{1}{2k-1}-\frac{1}{4k-2}-\frac{1}{4k})=\frac{1}{2}\sum _{k=1}^\infty (\frac{1}{2k-1}-\frac{1}{2k})$, but how can the latter inequality hold if $\sum _{k=1}^\infty (\frac{1}{2k-1}-\frac{1}{2k})$ and $\sum _{k=1}^\infty (\frac{1}{2k-1}-\frac{1}{4k-2}-\frac{1}{4k})$ are equal to $\ln(2)$?
Feel free to come up with a better title...