$$\lim_{n \to \infty} \frac{n!}{n^{n}}$$
Attempt:
$$n!=n\left( n-1 \right)\left( n-2 \right)...\left( n-\left( n-1 \right) \right)=n^{n}+...$$
$$\lim_{n \to \infty} \frac{n!}{n^{n}}=\lim_{n \to \infty} \frac{n^{n}+...}{n^{n}}=\lim_{n \to \infty} \frac{1+...}{1}=1+\lim_{n \to \infty} \ ...=1$$
I based this on the fact that $n$ is the highest power. The answer's meant to be $0$ though.