0

Let $A,B$ be two $n\times n$-matrices over $\mathbb K$ and assume $\bigoplus\limits_{i=1}^{k} Eig(A,\lambda_i)=\bigoplus\limits_{i=1}^{k} Eig(B,\mu_i)=\mathbb K^n$, where $\lambda_i, \mu_i$ are distinct eigenvalues of $A$ and $B$ respectively, show that if $\forall i, \exists j$ s.t. $Eig(B,\mu_i)=Eig(A,\lambda_j)$ then $A$ and $B$ commute

Does it follow from $\mathbb K$ and assume $\bigoplus\limits_{i=1}^{k} Eig(A,\lambda_i)=\bigoplus\limits_{i=1}^{k} Eig(B,\mu_i)=\mathbb K^n$ that $A$ and $B$ are diagonalizable, or more than that ?

the question looks like the converse of this

inequal
  • 1,367

0 Answers0