Let $x_{1} = -\sqrt{3}\;\;,x_{2} = -\sqrt{3+\sqrt{3}}\;\;,x_{3}=-\sqrt{3+\sqrt{3}+\sqrt{3}}\;,...... $ Then $\lim_{n\rightarrow \infty}x_{n}$
$\bf{My\; Try::}$ We can write $$x_{n} = -\underbrace{\sqrt{3+\sqrt{3+\sqrt{3+\sqrt{3+.........+\sqrt{3}}}}}}_{\bf{n- times \;\sqrt{3}}}$$
So When $n\rightarrow \infty\;,$ Then $\lim_{n\rightarrow \infty}x_{n} = -\sqrt{3+\sqrt{3+\sqrt{3+..............\infty}}}$
Now how can i solve after that, help me
Thanks