Show that the polynomial $h(x)=(x-1)(x-2) \cdots (x-n)-1$ is irreducible in $\mathbb{Z}[x]$ for all $n \geq 1$.
This problem seems to be hard to solve. I thought I could use Eisenstein in developping this polynomial, but it is a bad idea. Another idea would be to suppose the existence of $f(x)$ and $g(x)$, and suppose that $f(x)g(x)=(x-1)(x-2) \cdots (x-n)-1$. In this direction, we could analyse the roots of $h(x)$ I guess.
Is anyone could help me to solve this problem?