In this answer and this one, I provided primers on the Dirac Delta. Here, we present a simple heuristic way to evaluate the Laplace Transform of the Dirac Delta.
We use the definition of the unit step function $u(t)$ for right-continuous functions as given by
$$u(t)=\begin{cases}1&t\ge0\\\\0&,t<0\end{cases}$$
The function $e^{-st}u(t)$ is not a suitable test function due to the discontinuity at $t=0$. However, for $a\ne0$, we can exploit the fact that the Dirac Delta $\delta_a$ has support $\{0\}$ around $a$. Therefore, we can write
$$\begin{align}
\mathscr{L}\{\delta_a\}(s)&=\int_0^\infty \delta(t-a)e^{-st}\,dt\\\\
&=\int_{-\infty}^\infty \delta(t-a)e^{-st}u(t)\,dt\\\\
&=e^{-sa}u(a)\\\\
&=\begin{cases}
e^{-sa}&,a> 0\\\\
0&,a<0
\end{cases}
\end{align}$$
where the notation $\delta_a$ is the Dirac Delta $\delta(t-a)$.
We can interpret the Laplace transform of $\delta_0$ as the right-sided limit
$$\mathscr{L}\{\delta_0\}=\lim_{a\to 0^+} \mathscr{L}\{\delta_a\}=1$$