If $\beta,\gamma\in(0,\pi)$ such that $\cos\alpha+\cos(\alpha+\beta)+\cos(\alpha+\beta+\gamma)=0$ and $\sin\alpha+\sin(\alpha+\beta)+\sin(\alpha+\beta+\gamma)=0$; and $f(x)=\frac{\sin2x}{1+\cos2x}$, $g(x)=\frac{1+\sin x-\cos x}{1+\sin x+\cos x}$, Find $f'(\beta)+\lim_{x\to\gamma}g(x)$
Attempt:
$$f(x)=\tan x$$ $$g(x)=\tan\frac{x}{2}$$ $$f'(x)=\sec^2x$$
How can I compute $\gamma$?