Uniform convergence of the inner limit is sufficient to justify the switch.
You can show using $(1 + 1/n)^{n} < e < (1-1/n)^{-n}$ that for $h \in [-\delta, \delta]$
$$\left|\frac{e^h - \left(1 + 1/n\right)^{nh}}{h}\right| < \frac{e^{|h|}}{n} < \frac{e^\delta}{n}.$$
For $h > 0$, using the above inequalities and the Bernoulli inequality
$$0 < e^h - (1+1/n)^{nh} = e^h[1 - e^{-h}(1+1/n)^{nh}] \\ \leqslant e^h[1 - (1 -1/n^2)^{nh}] \\ \leqslant e^h \frac{nh}{n^2} \\ \frac{he^h}{n}.$$
(Make a similar estimate for $h < 0$.)
Hence, we have
$$\lim_{n \to \infty}\frac{(1+1/n)^{nh}-1}{h} = \frac{e^h-1}{h},$$
uniformly for $h \in [-\delta,\delta]$.