$$\lim\limits_{n\to \infty}\left(\sqrt{x^2+4x\ +1}-x\right)$$
The answer is $2$ but I don't know how to evaluate it
$$\lim\limits_{n\to \infty}\left(\sqrt{x^2+4x\ +1}-x\right)$$
The answer is $2$ but I don't know how to evaluate it
$$\lim _{x \rightarrow \infty} \left(\left(\sqrt{x^2+4x\ +1}\right)-x\right)=\lim _{x \rightarrow \infty}\frac{\left(x^2+4x +1\right)-x^2}{\left(\sqrt{x^2+4x\ +1}\right)+x}=$$ $$\lim _{x \rightarrow \infty}=\frac{4x +1}{\sqrt{x^2+4x\ +1}+x}=\frac 42=2$$
$$=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^2+4x\ +1}-x\right)}{1}$$
Multiply nominator and denominator by $\sqrt{x^2+4x\ +1}+x$
$$\require{cancel}=\lim _{x \rightarrow \infty}\frac{\left(\cancel{x^2}+4x +1\right)\cancel{-x^2}}{\left(\sqrt{x^2+4x\ +1}\right)+x}$$ $$=\lim _{x \rightarrow \infty}\frac{4x +1}{\sqrt{x^2+4x\ +1}+x}$$
Divide nominator and denominator by $x$
$$=\lim _{x \rightarrow \infty}\frac{4 +\overbrace{1/x}^{\to 0}}{\sqrt{1+\underbrace{4/x}_{\to 0} +\underbrace{1/x^2}_{\to0}}+1}=\frac {4} {1+1}=\color{red}2$$