If $\frac{1}{1^4}+\frac{1}{2^4}+\frac{1}{3^4}\cdots=\frac{\pi^4}{90}$, then find the value of $\frac{1}{1^4}+\frac{1}{3^4}+\frac{1}{5^4}\cdots$
Firstly how is $\frac{1}{1^4}+\frac{1}{2^4}+\frac{1}{3^4}\cdots=\frac{\pi^4}{90}$?
Secondly, I thought $$\frac{1}{1^4}+\frac{1}{3^4}+\frac{1}{5^4}\cdots=\frac{1}{2^4}+\frac{1}{4^4}+\frac{1}{6^4}\cdots=\frac{S}{2}$$ But answer given is $\frac{\pi^4}{96}$. Whats the mistake in this?
Edit:
I found a way to get the answer. $$\frac{1}{1^4}+\frac{1}{2^4}+\frac{1}{3^4}\cdots=\frac{1}{1^4}+\frac{1}{3^4}+\frac{1}{5^4}\cdots+\frac{1}{2^4}\left(\frac{1}{1^4}+\frac{1}{2^4}+\frac{1}{3^4}\cdots\right)$$ $$S=S_1+\frac{1}{2^4}S$$