Prove that $$\left|\frac{e^{-ht}-1}{h}\right|\le t$$ for $h>0$, $t>0$.
$$\left|\frac{e^{-ht}-1}{h}\right|=\left|\frac{1+(-ht)+\frac{(-ht)^2}{2!}+\frac{(-ht)^3}{3!}+\ldots -1}{h}\right|=$$
$$=\left|-t+\frac{ht^2}{2}+\frac{-h^2 t^3}{3!}+\ldots \right|=\left|\sum_{n=1}^{\infty} (-1)^n \frac{h^{n-1}t^n}{n!} \right|$$
Now, since this is alternating series and $$\frac{h^{n-1}t^n}{n!}$$ is non-increasing sequence we have that
$$\left|\sum_{n=1}^{\infty} (-1)^n \frac{h^{n-1}t^n}{n!} \right|\le|a_1|=|-t|=t$$
Is the above thing correct?