Plugging in $x=0$ or $x=1$, we get $f(1)=1$. Plugging in $x=\frac12$, we get $f\left(\frac12\right)=1$. So if $f$ is non-decreasing, we have that $f(x)=1$ for $x\in\left[\frac12,1\right]$. Now, for $x\in\left[0,\frac12\right]$,
$$
\begin{align}
f(x)
&=\frac{1-(1-x)f(1-x)}x\\
&=\frac{1-(1-x)\cdot1}x\\[3pt]
&=1\tag{1}
\end{align}
$$
Thus, we must have $f(x)=1$ for $x\in[0,1]$.
For $x\not\in[0,1]$, suppose $x\gt1$ and $f(x)\gt1$, then $1-x\lt0$ and
$$
\begin{align}
f(1-x)
&=\frac{1-xf(x)}{1-x}\\
&=\frac{1-x-x(f(x)-1)}{1-x}\\
&=1+\frac{x}{x-1}(f(x)-1)\\[3pt]
&\gt1\tag{2}
\end{align}
$$
Thus, $f$ must have decreased for $x\lt0$. Therefore, $f(x)=1$ for all $x\gt1$. We can then apply $(1)$ to get that $f(x)=1$ for all $x\lt0$. Since $f(x)$ is non-decreasing, we get that $f(0)=1$, as well.
Therefore, $f(x)=1$ for all $x\in\mathbb{R}$.