Suppose that $q=2$ and $n=31$.
$C_0=\{0\}$
$C_1=\{1,2,4,8,16\}=C_2=C_4=C_8=C_{16}$
$C_3=\{3,6,12,24,17\}=C_6=C_{12}$
$C_5=\{5,10,20,9,18\}=C_9=C_{10}$
$C_7=\{7,14,28,25,19\}=C_{14}$
$C_{11}=\{11,22,13,26,21\}=C_{13}$
$C_{15}=\{15,30,29,27,23\}$
$ord_{31}(3)=5$, $x^{31}-1$ has roots in $\mathbb{F}_{2^5}$. Let $\alpha$ be the primitive element in $\mathbb{F}_{2^5}$.
Monic polynomial of $C_1$ will be $(x-1)(x-2)(x-4)(x-8)(x-16)=-1024+1984 x-1240 x^2+310 x^3-31 x^4+x^5\equiv30-30x^2+x^5\mod{13}$
But this monic polynomial isn't right, can someone give me a hint or suggestion to get a right a one so that I can construct the generator polynomial? Thanks