In THIS ANSWER, I showed using only the limit definition of the exponential function and Bernoulli's Inequality that the logarithm function satisfies the inequalities
$$\frac{x-1}{x}\le \log(x)\le x-1 \tag 1$$
for $x>0$. Then, for any number $\alpha >0$, we have from $(1)$
$$\frac{x^{\alpha}-1}{x^{\alpha}}\le \log(x^\alpha)\le x^{\alpha}-1 \tag 2$$
Using $\log(x^{\alpha})=\alpha \log(x)$ in $(2)$ reveals that for any $x>0$ and any $\alpha >0$
$$\frac{x^{\alpha}-1}{\alpha x^{\alpha}}\le \log(x)\le \frac{x^{\alpha}-1}{\alpha} \tag 3$$
Finally, using $(3)$ we find that
$$\frac{n^{-p}-n^{-(\alpha+p)}}{\alpha }\le \frac{\log(n)}{n^p}\le \frac{n^{\alpha-p}-n^{-p}}{\alpha}\tag 4$$
- From the right-hand side of $(4)$, for any $p>1$, we can choose $\alpha$ so that $p-\alpha >1$ also. Therefore, if $p>1$, then we find that
$$\sum_{n=1}^N \frac{\log(n)}{n^p}\le \frac{1}{\alpha}\sum_{n=1}^N\frac{1}{n^{p-\alpha}} \tag 5$$
and the series of interest converges by the comparison test (or the integral test).
- From the left-hand side of $(4)$, for any $p\le 1$ and for all $\alpha$, we see that
$$\sum_{n=1}^N \frac{\log(n)}{n^p}\ge \frac{1-2^{-\alpha}}{\alpha}\sum_{n=2}^N \frac{1}{n^p}$$
and the series of interest diverges by the comparison test (or the integral test).