I'm not sure what tools you are aware of, so this is probably beyond them. But differentiation of vectors and matrices is possible. And the norm-squared is just the inner product with respect to itself. The chain-rule and product formula both have analogs in this situation, so:
$$\frac{d}{d\epsilon}J(\epsilon)=\frac{d}{d\epsilon} \left\langle\Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z, \Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right\rangle\\
=\left\langle\frac{d}{d\epsilon}\left(\Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right), \Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right\rangle\\
+\left\langle\Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z, \frac{d}{d\epsilon}\left(\Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right)\right\rangle\\=
2\left\langle\frac{d}{d\epsilon}\left(\Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right), \Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right\rangle$$
Now assuming that the only dependence on $\epsilon$ here is $\epsilon$ itself (all other values are constant with respect to it), $$\frac{d}{d\epsilon}\left(\Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right)\\=-H\frac{d}{d\epsilon}\left((H^TH+\frac{1}{\epsilon}I)^{-1}\right)H^T\Delta z$$
The rule for taking the derivative of an inverse matrix is more complicated than the real version: $\frac d{dt}A^{-1} = -A^{-1}\frac {dA}{dt}A^{-1}$. Fortunately in this case we can do some simplification:
$$\frac{d}{d\epsilon}\left((H^TH+\frac{1}{\epsilon}I)^{-1}\right) \\=-(H^TH+\frac{1}{\epsilon}I)^{-1} \left(\frac{d}{d\epsilon}(H^TH+\frac{1}{\epsilon}I)\right)(H^TH+\frac{1}{\epsilon}I)^{-1}\\=-(H^TH+\frac{1}{\epsilon}I)^{-1}\left(\frac{-1}{\epsilon^2}I\right)(H^TH+\frac{1}{\epsilon}I)^{-1}\\=\frac 1{\epsilon^2}(H^TH+\frac{1}{\epsilon}I)^{-2}\\=(\epsilon H^TH+I)^{-2}$$
So: $$\frac{d}{d\epsilon}\left(\Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right)\\=-H(\epsilon H^TH+I)^{-2}H^T\Delta z$$
And:$$\frac{d}{d\epsilon}J(\epsilon) =2\left\langle -H(\epsilon H^TH+I)^{-2}H^T\Delta z, \Delta z -H(H^TH+\frac{1}{\epsilon}I)^{-1}H^T\Delta z\right\rangle$$