Let $G$ be an abelian group, $g_1,g_2\in G$ of finite order ($o(g_1)=m,o(g_2)=n)$ with $(o(g_1),o(g_2))=1$ (relatively prime). Show that $o(g_1\cdot g_2)=o(g_1)\cdot o(g_2)$.
I have tried the following:
$o(g_1)\cdot o(g_2)=m\cdot n$. Then, if $(g_1\cdot g_2)^{m\cdot n}=e\Rightarrow o(g_1\cdot g_2)=o(g_1)\cdot o(g_2)$.
$(g_1\cdot g_2)^{m\cdot n}=(g_1)^{m\cdot n}\cdot (g_2)^{m\cdot n}$ because $G$ is abelian. So, $(g_1)^{m\cdot n}\cdot (g_2)^{m\cdot n}=(g_{1}^{m})^n\cdot (g_{2}^{n})^m=e^n\cdot e^m=e\cdot e=e$
But I have not used the hypothesis that they are relatively prime.