Find the value of $$\sin\frac{\pi}{7}\sin\frac{2\pi}{7}\sin\frac{3\pi}{7}\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}$$
$$\sin\frac{\pi}{7}\sin\frac{2\pi}{7}\sin\frac{3\pi}{7}\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}$$ $$=\sin\frac{2\pi}{14}\sin\frac{4\pi}{14}\sin\frac{6\pi}{14}\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}$$ $$=\sin\frac{\pi}{14}\sin\frac{2\pi}{14}\sin\frac{3\pi}{14}\sin\frac{4\pi}{14}\sin\frac{5\pi}{14}\sin\frac{6\pi}{14}$$
How can I compute $$\prod\limits_{r=1}^{n}\sin\frac{r\pi}{c}$$