I'm trying to evaluate the integral below for my research related to sound radiation. Assume $a$ is a positive constant.
$$\int_{-\infty}^\infty\frac{e^{-ik\sqrt{x^2+a^2}}}{\sqrt{x^2+a^2}}dx$$
First, I tried to separate the functon real and imaginary part.
$$\int_{-\infty}^\infty\frac{\cos({k\sqrt{x^2+a^2})}}{\sqrt{x^2+a^2}}dx-i\int_{-\infty}^\infty\frac{\sin({k\sqrt{x^2+a^2})}}{\sqrt{x^2+a^2}}dx$$
And I tried to contour integral using branch cut similar to the link. However I can't handle branch cuts on the imaginary line well.(Is the answer of the link only way to handle it?) How to handle that branch cuts simple as the case of real line.
And.... How to evaluate the whole integral??
Thanks for several answers. I've thought the problem too hard..
However, I made a mistake to my question. I need to consider the case when $a=0$. I guess...
$$\int_{-\infty}^\infty\frac{e^{-ik\sqrt{x^2}}}{\sqrt{x^2}}dx=2\int_{0}^\infty\frac{e^{-ik\sqrt{x^2}}}{\sqrt{x^2}}dx=2\int_{0}^\infty\frac{e^{-ikx}}{x}dx$$ Is it valid?