The closely related integral
$\Gamma(1/2)=\int_0^\infty\dfrac{e^{-x}dx}{\sqrt x}=\sqrt\pi$
can also be solved through a double integration ... with a different sort of coordinate transformation.
Let $I$ be the target integral and multiply it by itself to get the double integral
$I^2=\int_0^\infty\int_0^\infty\dfrac{e^{-(x+y)}(dx)(dy)}{\sqrt {xy}}$
And then rotate the coordinate system by 45°:
$\xi=(x+y)/\sqrt2,\eta=(y-x)/\sqrt2$
Therefore, using the algebraic identity $xy=(1/2)(\xi^2-\eta^2)$ with variables defined as above, we may render
$I^2=\int_0^\infty\int_{-\xi}^\xi\dfrac{\sqrt2e^{-\xi\sqrt2}(d\eta)(d\xi)}{\sqrt{\xi^2-\eta^2}}$
Where is the Jacobian conversion factor above? That's the beauty part. Unlike conversion to polar coordinates, the rotation of the Cartesian coordinates is area-preserving (both magnitude and sense of rotation about the boundary of the area), so the conversion factor is simply $+1$. We do not have to jump through hoops to identify that "extra" factor of $r$ we get with the polar conversion, and yet the exponential function integration will remain elementary.
So we separate terms dependent only on $\xi$ to get
$I^2=\int_0^\infty\sqrt2e^{-\xi\sqrt2}[\int_{-\xi}^{\xi}\dfrac{d\eta}{\sqrt{\xi^2-\eta^2}}]d\xi$
Plugging in $u=\eta/\xi$ converts the $\eta$ integral to
$\int_{-1}^1\dfrac{du}{\sqrt{1-u^2}}=\sin^{-1}u| _{-1}^1=\pi$
The $\xi$ integral gives directly
$\int_0^{\infty}\sqrt2e^{-\xi\sqrt2}d\xi=e^{-\xi\sqrt 2}|_0^{\infty}=1$
So
$I^2=(1)(\pi)=\pi, I>0; \therefore I=\Gamma(1/2)=\sqrt{\pi}\approx 1.772.$
The above result may be generalized to cover the $\Gamma$ function for all positive arguments. Consider the integral
$\Gamma(a)=\int_0^{\infty}x^{a-1}e^{-x}dx, a>0$
Square and convert to double integral form, then rotate the coordinates as above:
$[\Gamma(a)]^2=\int_0^\infty\int_0^\infty\dfrac{e^{-(x+y)}(dx)(dy)}{\sqrt {xy}}$
$=\int_0^\infty\int_{-\xi}^\xi2^{1-a}e^{-\xi\sqrt2}(\xi^2-\eta^2)^{a-1}(d\xi)(d\eta)$
The $\eta$ integration is done by putting in $u=\eta/\xi$. Note that with $a\ne1/2$ we get an extra factor entering the $\xi$ integration:
$[\Gamma(a)]^2=2^{1-a}\int_0^\infty\xi^{2a-1}e^{-\xi\sqrt2}\int_{-1}^1(1-u^2)^{a-1}du$
$=2^{1-2a}\Gamma(2a)\int_{-1}^1(1-u^2)^{a-1}du$
And thus
$\Gamma(a)=2^{(1/2)-a}\sqrt{\Gamma(2a)\int_{-1}^1(1-u^2)^{a-1}du}$
Thus $\Gamma(a)$ is rendered in terms of $\Gamma(2a)$ and an algebraic-function integral. If $a$ is half a natural number, tgen $\Gamma(2a)=(2a-1)!$ is a factorial and the algebraic-function integral is elementary, thus recovering the familiar function values. For instance:
$\Gamma(1/2)=2^0\sqrt{0!\int_{-1}^1(1-u^2)^{-1/2}du}=1\sqrt{(1)(\pi)}=\sqrt\pi\approx 1.772.$
$\Gamma(1)=2^{-1/2}\sqrt{1!\int_{-1}^1(1-u^2)^0du}=\sqrt{1/2}\sqrt{(1)(2)}=1.$
$\Gamma(3/2)=2^{-1}\sqrt{2!\int_{-1}^1(1-u^2)^{1/2}du}=(1/2)\sqrt{(2)(\pi/2)}=(1/2)\sqrt\pi\approx 0.886.$
For other values of $a$ the integral is nonelementary and the $\Gamma$ function will also be nonelementary, but for some rational arguments expressions are available in terms of elliptic integrals. Let us explore the simplest such case, $a=1/4$.
For this case we render
$\Gamma(1/4)=2^{1/4}\sqrt{(\sqrt\pi)\int_{-1}^1(1-u^2)^{-3/4}du}$
The integral may be converted to a form matching the complete elliptic integral of the first kind:
$\int_{-1}^1(1-u^2)^{-3/4}du=2\int_0^1(1-u^2)^{-3/4}du$
$=2\int_0^1\dfrac{2t^3(dt)}{t^3\sqrt{1-t^4}}, t=(1-u^2)^{1/4}$
$=4\int_0^1\dfrac{dt}{\sqrt{1-t^4}}=4\int_0^1\dfrac{dt}{\sqrt{1-t^2}\sqrt{1+t^2}}=4K(i)$
where the complete elliptic integral of the first kind is defined as
$K(k)=\int_0^1\dfrac{dt}{\sqrt{1-t^2}\sqrt{1-k^2t^2}}$
(The argument $i$ is a square root of $-1$; the function is real for pure imaginary arguments.) Thereby
$\Gamma(1/4)=(32\pi)^{1/4}\sqrt{K(i)}\approx 3.626$
where the elliptic integral may be rendered with high efficiency using (real) arithmetic and geometric means.
this was the paper i was talking about
– tired Feb 26 '16 at 12:55