1

I have the following

$$ \mathscr{F} \{ x^2 (1+x^2)^{-2} \} ( \xi ) $$

All I could think of was

$$ -\frac{d^2}{d\xi ^2} \mathscr{F} \{ (1+x^2)^{-2} \}(\xi) $$

but I don't know what to do next. I could solve this if the power of the expression was only $-1$.

KSHMR
  • 301

1 Answers1

1

\begin{align} \mathscr F\left\{ x^2 (1+x^2)^{-2} \right\} ( \xi )&=\mathrm i\frac{\mathrm d}{\mathrm d\xi}\mathscr F\left\{ x(1+x^2)^{-2} \right\} ( \xi )\\&=\frac12\mathrm i\frac{\mathrm d}{\mathrm d\xi}\mathscr F\left\{\frac{\mathrm d}{\mathrm dx}(1+x^2)^{-1} \right\} ( \xi )\\&=\frac12\frac{\mathrm d}{\mathrm d\xi}\xi\mathscr F\left\{(1+x^2)^{-1} \right\} ( \xi )\;. \end{align}

joriki
  • 238,052