Let $f = (f_1, \dots , f_n) : \mathbb{R}^n\rightarrow\mathbb{R}^n$ be twice differentiable. If the derivative matrix $(Df)_x$ is skew-symmetric for all $x$ that is, if $(Df)^T_x = -(Df)_x$ show that $f(x) = Ax+b$ for some (skew-symmetric) matrix $A$ and some $b \in \mathbb{R}^n$.
So I need to show first that $D^2f=0$. Then I can say $Df$ is a constant matrix and then $f(x)-Ax$ is constance and I'm done.
So to show $D^2f=0$:
I know $\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n}\\ \vdots & & \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}^T = \begin{pmatrix} \frac{-\partial f_1}{\partial x_1} & \cdots & \frac{-\partial f_1}{\partial x_n}\\ \vdots & & \\ \frac{-\partial f_n}{\partial x_1} & \cdots & \frac{-\partial f_n}{\partial x_n} \end{pmatrix}$,
but I'm having trouble seeing how that leads to $D^2f=0$