I am in war with my textbook. It says that $\int \sin^n{x}\cos^m{x}\ dx=\frac{\sin^{n+1}x\cos^{m-1}x}{n+m}+\frac{m-1}{n+m}\int \sin{x}\cos^{m-2}\ dx$.
Then I wrote the proof. Here is what I got. \begin{equation*} \begin{split} \int \sin^n{x}\cos^m{x}\ dx&=\int \sin^n{x}\cos^{m-1}{x}\cos{x}\ dx\\ &=\int \sin^{n}{x}\cos^{m-1}\ d(\sin{x})\\ &=\cos^{m-1}x\frac{\sin^{n+1}{x}}{n+1}-\int \frac{\sin^{n+1}{x}}{n+1}(m-1)\cos^{m-2}{x}\ dx\\ &=\frac{\sin^{n+1}{x}\cos^{m-1}{x}}{n+1}-\frac{m-1}{n+1}\int\sin^{n+1}{x}\cos^{m-2}{x}\ dx \end{split} \end{equation*}
Maybe you know what I missed?