Calculate the limit
$$\lim_{x \to 2} \frac{x^2\sqrt{x+2}-8}{4-x^2}$$
I tried to factorise and to simplify, but I can't find anything good. $$\lim_{x \to 2} \frac{\frac{x^2(x+2)-8\sqrt{x+2}}{\sqrt{x+2}}}{(4-x^2)}$$
Calculate the limit
$$\lim_{x \to 2} \frac{x^2\sqrt{x+2}-8}{4-x^2}$$
I tried to factorise and to simplify, but I can't find anything good. $$\lim_{x \to 2} \frac{\frac{x^2(x+2)-8\sqrt{x+2}}{\sqrt{x+2}}}{(4-x^2)}$$
Substitute $t=\sqrt{x+2}$; if $x\to2$, then $t\to2$, so, after doing $x=t^2-2$, you get \begin{align} \lim_{t\to2}\frac{t(t^2-2)^2-8}{4-(t^2-2)^2} &=\lim_{t\to2}\frac{t^5-4t^3+4t-8}{4t^2-t^4} \\[4px] &=\lim_{t\to2}\frac{t^3(t^2-4)+4(t-2)}{t^2(4-t^2)} \\[4px] &=\lim_{t\to2}\left(-t-\frac{4}{t^2(2+t)}\right) \end{align}
L'Hôpital's rule is not necessary. Here are the steps $$\lim\limits_{x\to 2} \frac{x^2\sqrt{x+2}-8}{4-x^2}$$ $$=\lim\limits_{x\to 2} \frac{8-x^2\sqrt{x+2}}{(x-2)(x+2)}$$ Let $t=\sqrt{x+2}$, then $$\lim\limits_{t\to 2} \frac{8-\left(t^2-2\right)^2 t}{\left(t^2-4\right)t^2}$$ $$=\lim\limits_{t\to 2} \frac{\left(-t^5+4t^3-4t+8\right)}{(t-2)(t+2)t^2}$$ $$=\lim\limits_{t\to 2} \frac{-(t-2)\left(t^4+2t^3+4\right)}{(t-2)(t+2)t^2}$$ $$=\lim\limits_{t\to 2} \frac{-\left(t^4+2t^3+4\right)}{(t+2)t^2}$$ $$=\lim\limits_{t\to 2} \frac{-\left(t^2+2t+\frac{4}{t^2}\right)}{t+2}$$ $$=-\frac{\left(4+4+1\right)}{2+2}$$ $$=-\frac{9}{4}$$
Since the OP does not know L'Hospital's rule (yet), this approach is probably not the best way. When you multiply top and bottom by $x^2\sqrt{x+2}+8$ you get the fraction: $\frac{x^5+2x^4-64}{(4-x^2)(x^2\sqrt{x+2}+8)}$ Both NUM and DENOM have a factor $x-2$ In case of the NUM, you could perform long division to arrive at $x^4+4x^3+8x^2+16x+32$ and in case of the DENOM, it is of course straight forward. Can you finish it from here?
It seems you may not know l'Hôpital's rule. It's also possible without the need for differentiation. Multiply numerator and denominator with the so called conjugate expression of the numerator:
$$\frac{x^2 \sqrt{x+2} - 8}{4-x^2} = \frac{\left( x^2 \sqrt{x+2} - 8 \right)\left( x^2 \sqrt{x+2} + 8 \right)}{\left(4-x^2\right) \left( x^2 \sqrt{x+2} - 8 \right)}$$
Then simplify via $(a-b)(a+b) =a^2-b^2$ in the numerator:
$$\frac{x^4(x+2)-64}{\left(4-x^2\right) \left( x^2 \sqrt{x+2} - 8 \right)}$$
Now you should factorise so you have a common factor $x-2$ in the numerator and denominator. In the denominator that's easy via $4-x^2 = (2-x)(2+x)=-(x-2)(x+2)$. For the nominator, you know that the polynomial divides $(x-2)$ since $x=2$ is a root of the polynomial. You can use long division or Horner's method for this:
$$x^4(x+2)-64 = x^5+2x^4-64=(x-2) (x^4+4 x^3+8 x^2+16 x+32)$$
So back to the limit:
$$\lim_{x \to 2} \frac{x^2 \sqrt{x+2} - 8}{4-x^2} =\lim_{x \to 2} \frac{(x-2) (x^4+4 x^3+8 x^2+16 x+32)}{-(x-2)(x+2) \left( x^2 \sqrt{x+2} + 8 \right)}$$
Cancel the common factor $x-2$ and plug in $x=2$, simplify:
$$\lim_{x \to 2} \frac{x^4+4 x^3+8 x^2+16 x+32}{-(x+2) \left( x^2 \sqrt{x+2} + 8 \right)} = \ldots = -\frac{9}{4}$$
If you have seen l'Hôpital's rule, the other answers give you an alternative.
For the sake of being concise, I have chosen to omit most of the intermediary algebraic simplifications. Letting $u = x+2$, we get
$$\lim_{u \to 4} \frac{{u^{\frac 52} - 4u^{\frac 32} + 4\sqrt{u} - 8}}{4 - u^2 + 4u - 4}$$
By L'hopital, this is equal to $$\lim_{u \to 4} \frac{\frac {5u^2 - 12u+4}{2 \sqrt{u}}}{4 - 2u} = \lim_{u \to 4} \frac{2 - 5u}{4\sqrt{u}} = -\frac{9}{4}$$